Non-specific Interaction

- **■** Electrostatic in nature
- **■** Limits effectiveness of ion in solution
- **■** Use concept of **activity** to quantify effect

(effective concentration)

$$\mathbf{a_i} = [\mathbf{i}]_F \gamma_F(\mathbf{i})$$

where a_i = activity of ion i

 $[i]_F$ = free ion conc. (m)

$$\gamma_F(i)$$
 = activity coefficient of ion i

In short

$$a = [i] \gamma$$

Activity of Individual Ion Influenced by Other Ions

♯ Ionic Strength of solution

$$I = 0.5 \Sigma Z^2 m$$

$$a = [i] \gamma$$

where I = ionic strength
 Z = charge on ion
 m = molal conc.
 (molarity or molinity
 can also be used)

Table 4.1 Concentrations of the major constituents in surface seawater

At salinity	(PSS 1978): S	= 35.000
-------------	---------------	----------

	g/kg	mmol/kg	mM
Na ⁺	10.781	468.96	480.57
K ⁺	0.399	10.21	10.46
Mg ⁺⁺	1.284	52.83	54.14
Ca ⁺⁺	0.4119	10.28	10.53
Sr ⁺⁺	0.00794	0.0906	0.0928
Cl-	19.353	545.88	559.40
SO ₄	2.712	28.23	28.93
HCO ₃	0.126	2.06	2.11
Br-	0.0673	0.844	0.865
$B(OH)_3$	0.0257	0.416	0.426
F ⁻	0.00130	0.068	0.070

SW Density = 1.024763 kg/L at 20 °C (Pilson 1998)

Major Components of SW

- **■** Na⁺, K⁺, Mg²⁺, Ca²⁺, Cl⁻ and SO₄²⁻ are most abundant
- **★** Account for 98.5 % of dissolved species in SW
- **#** Have major influence on SW density
- **■** Have long residence time in the ocean
- **■** Generally exhibit conservative behavior
 - Concentration influenced by physical processes such as evaporation & precipitation, not chemical or biological processes
- **■** Discussing completely dissolved species

Element Concentrations in Average River & Average Ocean Water with Residence Times

	Conc. Mean River (10-6 moles/kg)	Conc. Mean Sea (10 ⁻⁶ moles/kg)	τ (yrs)
Na Mg Al Si P SCl Ar K Ca	2.2 x 10 ² 1.6 x 10 ² 1.9 1.9 x 10 ² 1.3 - 3.4 x 10 ¹ 3.6 x 10 ²	4.7 x 10 ⁵ 5.3 x 10 ⁴ (3 x 10 ⁻²) 1.0 x 10 ² 2.3 2.8 x 10 ⁴ 5.5 x 10 ⁵ 1.5 x 10 ¹ 10.2 x 10 ³ 10.3 x 10 ³	8.3 x 10 ⁷ 1.3 x 10 ⁷ 6.2 x 10 ² 2.0 x 10 ⁴ 6.9 x 10 ⁴ - 1.2 x 10 ⁷ 1.1 x 10 ⁶

Cycling of SW Components

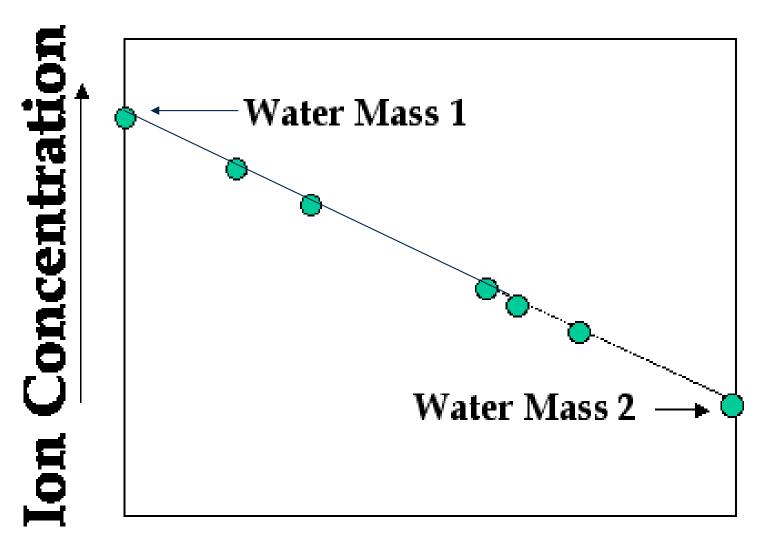
"The sea is a way station for the products of continental erosion. All substances received by the sea are ultimately passed along to the sediment...tectonic forces...eventually push the material buried in this way back above sea level where it becomes subject to erosion. Then another trip through the sea begins."

Broecker and Peng (1982)

Cycling of SW Components

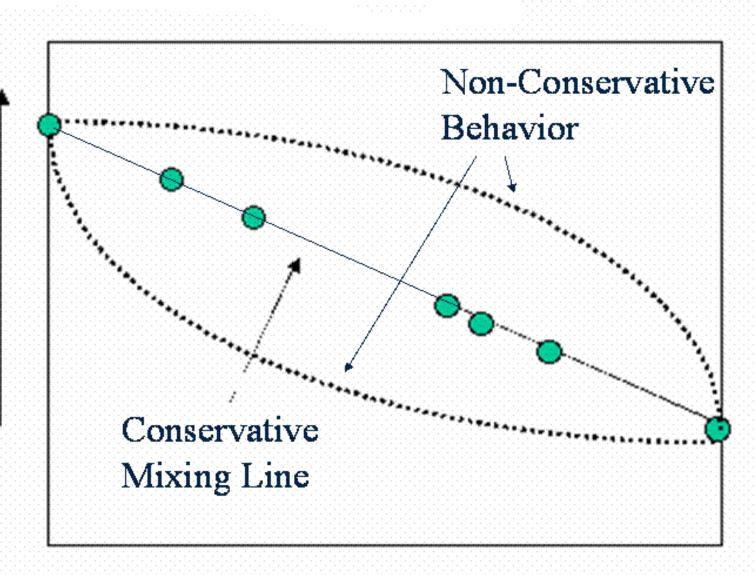
- ■ Most components are recycled many times within SW by a variety of processes
- \blacksquare Can determine residence times (τ) in ocean
- **#** Constituents can be classified as:
 - Biolimiting totally depleted in surface water
 - Biointermediate partially depleted
 - Biounlimited no measurable depletion
 - Noncycling reactive & removed

SW Composition


The composition of SW generally reflects two factors:

- 1) The relative abundance of the substance in river water (i.e., the input)
- 2) The presence of removal mechanisms that result in entrapment of the material in sediments (i.e., the output)

Major Components of SW


- **■** Na⁺, K⁺, Mg²⁺, Ca²⁺, Cl⁻ and SO₄²⁻ are most abundant
- **★** Account for 98.5 % of dissolved species in SW
- **#** Have major influence on SW density
- **■** Have long residence time in the ocean
- **■** Generally exhibit **conservative** behavior
 - Concentration influenced only by physical processes such as evaporation & precipitation, not chemical or biological processes
- **■** Discussing completely dissolved species

Conservative Mixing

Volume Ratio of Water Mass

Concentration

Volume Ratio of Water Mass

Marcet Principle (1819)

- **■** Relative composition of sea salt is nearly the same worldwide, i.e., major constituents are conservative
- **■** Constancy of Composition
- **♯** Principle of Constant Composition (Pilson)
- **■** Rule of Constant Proportions (Libes)
- **♯** First Law of Chemical Oceanography (Kester)
- **■** Several exceptions to the rule

Exceptions to the Rule

(or non-conservative behavior)

- Caused by processes such as: Reduction, Dissolution, Evaporation, etc.
- **■** Estuaries & Marginal Seas largely input of river water of different composition & other processes also (e.g., Baltic Sea)
- **■** Evaporation in Isolated Basins evaporites
- **#** Hydrothermal Vents − brines high in salt
- ➡ Precipitation & Dissolution aragonite & calcite dissolution in deep ocean increase Ca²⁺ levels with precipitation elsewhere

Exceptions to the Rule

(continued)

- **■** Anoxic Basins bacterial reduction of SO_4^{2-} to S^{2-}
- **■** Exchange at the Air-Sea interface causes fractionation of many components
- ➡ Freezing sea ice can be deficient in one or more constituents causing local concentration anomalies
- Interstitial Waters or Pore Waters − variety of processes many related to high surface areas in contact with water & anoxia

Cl⁻ has been Described as the Ultimate Conservative Tracer

- **#** Highest concentration in SW
- **■** Not biologically depleted
- **■** Not chemically limited
- \blacksquare One of the longest Residence Times (1 x 10⁸ yr)
- **■** Generally pretty boring
- Oceanographers have used Cl⁻ concentration to define the concentration of ocean water masses
- **■** Concept of Chlorinity = Cl⁻ (+ Br⁻) content of SW

Chlorinity (Cl)

- Amount of Cl⁻, Br⁻ and I⁻ in grams, contained in 1 kg of seawater assuming Br⁻ and I⁻ replaced by Cl⁻
- The number giving chlorinity in per mille of a seawater sample is by definition identical with the number giving the mass with unit gram of atomic weight silver just necessary to precipitate the halogens in 0.3285234 kg of the seawater sample (Jacobsen & Knudsen, 1940).

Salinity (S)

- ➡ Practical Salinity Scale Conductivity of seawater compared to KCl at 32.4356 g/kg (15 °C)

Practical Salinity Scale (PSS 1978)

- $\blacksquare R_T = C \text{ (sample)/C (std seawater)}$
- **♯** C = conductivity at specified temp. & pressure
- # Formerly used units of parts per thousand (°/_{oo})
- **■** Unitless since based on a ratio
- **■** Often see PSU or practical salinity units
- **■** Calibrate instrumentation with SW standard

Absolute Salinity (S_R)

SCOR/IAPSO

Scientific Committee on Oceanic Research

International Agency for the Physical Sciences of the Oceans

- WG 127 Thermodynamics & Equations of State of SW
- Density, Enthalpy, Entropy, Potential temp., Freezing temp.,
- Dissolved oxygen, Alkalinity, TCO₂, Ca, Silica

$$S_R = (35.16504 / 35) g/kg x S$$

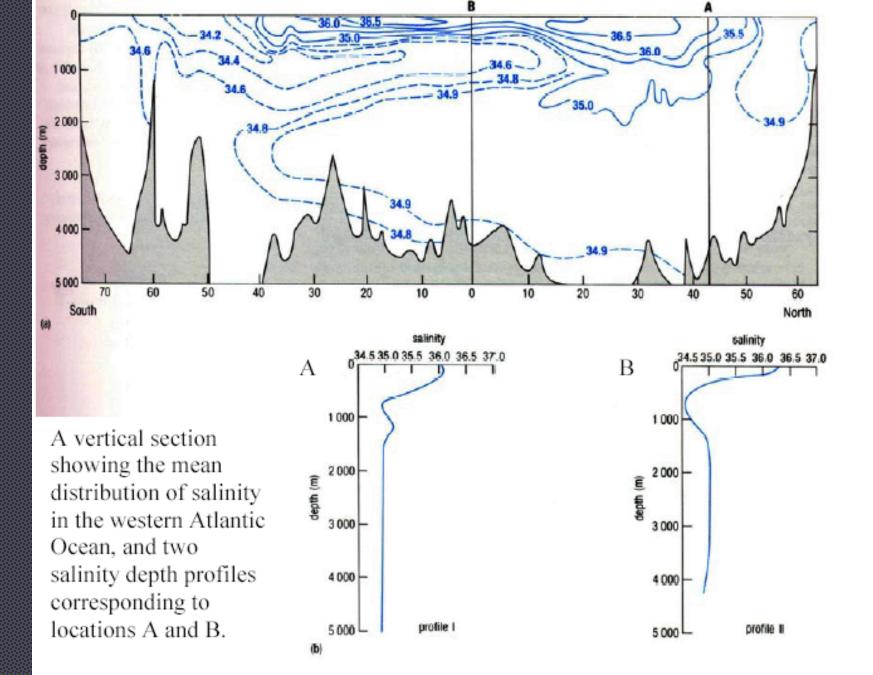
Precision in Salinity by Various Methods


8) Inductive Salinometer

1) Composition Studies of major components	\pm 0.01
2) Evaporation to dryness	± 0.01
3) Chlorinity	± 0.002
4) Sound Speeds	\pm 0.03
5) Density	\pm 0.004
6) Conductivity	\pm 0.001
7) Refractive index	\pm 0.05

Relationship between Salinity & Chlorinity

$$S = 1.80655 Cl$$


See Website for Salinity Handouts 1 - 4

CTDs

www.seabird.com www.valeport.co.uk

Chemical Equilibria

General representation

$$a \mathbf{A} + b \mathbf{B} \rightleftharpoons c \mathbf{C} + d \mathbf{D}$$

Where uppercase letters are chemical species and lowercase letters are coefficients (i.e. # of atoms or moles)

Equilibrium Constant

where [] = concentration, usually molar

Solubility Equilibria

$$Ba^{2+}_{(aq)} + SO_4^{2-}_{(aq)} \longrightarrow BaSO_{4(s)}$$

or by convention

$$BaSO_{4(s)} \longrightarrow Ba^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$$

Solubility Product (equilibrium constant)

$$[Ba^{2+}][SO_4^{2-}]$$
 $K_{sp} = ------ = [Ba^{2+}][SO_4^{2-}]$

$$a_{Ba} \ a_{SO4}$$
 $K_{sp} = ----- = a_{Ba} \ a_{SO4}$

activity of solid is defined as = 1

Solubility Calculated

Solubility (S) is the concentration of individual ions generated from an insoluble compound

$$BaSO_{4(s)} \longrightarrow Ba^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$$

$$S = [Ba^{2+}] = [SO_4^{2-}]$$

Solubility Calculation (continued)

Given
$$K_{SP} = [Ba^{2+}][SO_4^{2-}] = 2.0 \times 10^{-10}$$

Then
$$S = \sqrt{K_{SP}} = \sqrt{2.0 \times 10^{-10}} = 1.4 \times 10^{-5}$$

So
$$S = [Ba^{2+}] = [SO_4^{2-}] = 1.4 \times 10^{-5}$$

Activity Correction

$$K_{SP} = \frac{a_{Ba} a_{SO4}}{1} = a_{Ba} a_{SO4}$$

Since

$$a_{Ba} = \gamma_{Ba} [Ba^{2+}] \& a_{SO4} = \gamma_{SO4} [SO_4^{2-}]$$

Substituting

$$K_{SP} = a_{Ba}a_{SO4} = \gamma_{Ba} [Ba^{2+}]\gamma_{SO4} [SO_4^{2-}]$$

Solubility Calculation (completed)

Since

$$K_{SP} = [Ba^{2+}][SO_4^{2-}] \& \gamma_{Ba} = \gamma_{SO4}$$
 Then
$$S = \sqrt{\frac{K_{SP}}{\gamma^2}}$$

To determine the solubility of BaSO₄ in a solution containing other ions (like SW), you must calculate the activity coefficient (γ)